Fuzzy Criteria in Multi-objective Feature Selection for Unsupervised Learning
نویسندگان
چکیده
منابع مشابه
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملA Multi-Objective Unsupervised Feature Selection using Genetic Algorithm
Data mining is related to large number of databases. Dealing with such large number of datasets may create some obstacles. Such problems can be avoided by using feature selection Technique. Feature selection Technique is a method which selects an optimal subset from original feature set. The implementation is done by removing repetitive features. The underlying structure has been neglected by t...
متن کاملFeature Selection for Unsupervised Learning
In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Feature Subset Se...
متن کاملA Fuzzy Approach For Multi-Objective Supplier Selection
Assessment and selection of suppliers are two most important tasks in the purchasing part in supply chain management. Supplier selection can be considered to be a single or multi-objective problem. From another point of view, it can be a single or multi-sourcing problem. In this paper, an integrated AHP and Fuzzy TOPSIS model is proposed to solve the supplier selection problem. This model makes...
متن کاملA fuzzy random multi-objective approach for portfolio selection
In this paper, the portfolio selection problem is considered, where fuzziness and randomness appear simultaneously in optimization process. Since return and dividend play an important role in such problems, a new model is developed in a mixed environment by incorporating fuzzy random variable as multi-objective nonlinear model. Then a novel interactive approach is proposed to determine the pref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2016
ISSN: 1877-0509
DOI: 10.1016/j.procs.2016.09.369